

CLASS XII MATHS

DEFINITE INTEGRAL

4/6MARKS

$$1.\int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$$

$$\int_0^n \frac{x Tanx}{Secx Co \sec x} \, dx$$

2.

$$3. \int_{0}^{\pi/4} \frac{\sin x + \cos x}{9 + 16\sin 2x} dx$$

 $4. \int_{0}^{\pi/2} \sin 2x \cdot \log \tan x \, dx .$

$$5. \int_{0}^{3/2} |x \cos \pi x| dx$$

6.
$$\int_{0}^{2} |x^2 + 2x - 3| dx$$

$$7. \int_{-a}^{a} \sqrt{\frac{a-x}{a+x}} dx = a\pi$$

$$8. \int_{0}^{\frac{\pi}{4}} \log(1+\tan x) dx$$

9.
$$\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\cot x}} dx$$

10. Evaluate $\int_{0}^{1} e^{2-3x} dx$ as a limit of a sum

11.
$$\int_{0}^{\pi/2} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx$$

12.
$$\int_{3}^{6} (|x-3|+|x-4|+|x-5|) dx$$

13.
$$\int_{0}^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx$$

14.
$$\int_{0}^{\pi/2} \frac{dx}{1 + \tan x}$$

15.
$$\int_{0}^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$

$$16. \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$$

17.
$$\int_{1}^{3} \frac{\sqrt{4-x}}{\sqrt{x} + \sqrt{4-x}} dx$$

$$18. \int_{0}^{\pi} \frac{x}{1 + \sin x} dx$$

19.Evaluate $\int_{1}^{4} (x^2 - x) dx$ as the limit of sums.

$$20.\int_{0}^{\pi}\log(1+\cos x)\,dx.$$

$$21.\int_{0}^{\pi} \frac{xSinx}{1+Cos^{2}x}$$

22. Evaluate as limit sum
$$\int_{1}^{3} (2x^2 + 5) dx$$

23.Evaluate:
$$\int_{0}^{\pi} \frac{x}{(1+\cos^2 x)} dx$$

24.
$$\int_{-1}^{3/2} |x \sin \pi x| dx$$

25. Evaluate
$$\int_{-1}^{1} (|x-1|+|x|+|x+1|) dx$$

- 26. Evaluate $\int_{1}^{3} (2x^2 + 3x + 5) dx$ as limit of a sum.
- 27. Evaluate :- $\int_{1}^{3} (x^2 + 5x + 1) dx$ as a limit of a sum.

APPLICATIONS OF DEFINITE INTEGRALS

- 1. Using integration find the area of the region bounded by the triangle whose vertices (-1,1), (0,5) and (3,2).
- 2. Find the area of smaller region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the straight line $\frac{x}{4} + \frac{y}{3} = 1$
- 3. Sketch the region enclosed between circles $x^2 + y^2 = 1$ and $x^2 + (y 1)^2 = 1$. Also find the area of region using integration
- 4. Find the area of the region enclosed between the two curves $x^2 + y^2 = 1$ and $(x-1)^2 + y^2 = 1$
- 5. Find the area of the region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$
- 6. Sketch the region common to the circle $x^2 + y^2 = 16$ and the parabola $x^2 = 6y$. Also, find the area of the region, using integration.
- 7. Make the rough sketch and find the area of the region (using integration) enclosed by the curves $y^2=4ax$ and $x^2=4ay$.
- 8. Make the rough Sketch and find the area of the region

$$\{(x, y): x^2 + y^2 \le 2ax, y^2 \ge ax, x \ge 0, y \ge 0\}$$

9. Draw a rough Sketch of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$
